EE 330 Lecture 33

- High Gain Amplifiers
- Current Sources and Mirrors

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27 Exam 2 Friday October 25 Exam 3 Friday Nov 22

Final Exam Monday Dec 16 12:00 - 2:00 PM

Review From Previous Lecture

Basic Amplifier Application Gain Table

Can use these equations only when small signal circuit is EXACTLY like that shown !!

Summary of Missing Material from Lecture 32

Start Here:

Basic Amplifier Structures

- 1. Common Emitter/Common Source
- 2. Common Collector/Common Drain
- 3. Common Base/Common Gate
- 4. Common Emitter with R_{E} / Common Source with R_{S}
- 5. Cascode (actually CE:CB or CS:CG cascade)
- 6. Darlington (special CC:CE or CD:CS cascade)

Will be discussed later

The first 4 are most popular

Basic Amplifier Characteristics Summary

Cascaded Amplifiers

- Amplifier cascading widely used to enhance gain
- Amplifier cascading widely used to enhance other characteristics and/or alter functionality as well e.g. (R_{IN} , BW, Power, R_{O} , Linearity, Impedance Conversion..)

Cascaded Amplifier Analysis and Operation

• Systematic Methods of Analysis/Design will be Developed

One or more couplings of nonadjacent stages

Less Common

• Analysis Generally Much More Involved, Use Basic Circuit Analysis Methods

Repeat from earlier discussions on amplifiers

Cascaded Amplifier Analysis and Operation

Case 1: All stages Unilateral

Accounts for all loading between stages !

Cascaded Amplifier Analysis and Operation

Case 2: One or more stages are not unilateral

➢ Standard two-port cascade

Analysis by creating new two-port of entire amplifier quite tedious because of the reverse-gain elements

\triangleright Right-to-left nested R_{inx}, A_{VKX} approach

Determine the voltage gain of the following circuit in terms of the smallsignal parameters of the transistors. Assume Q¹ and Q² are operating in the Forward Active region and C1…C⁴ are large.

In this form, does not look "EXACTLY" like any of the basic amplifiers !

Will calculate A_V by determining the three ratios (not voltage gains of dependent source):

$$
A_{\vee} = \frac{v_{\text{out}}}{v_{\text{in}}} = \frac{v_{\text{out}}}{v_{\text{B}}} \frac{v_{\text{B}}}{v_{\text{A}}} \frac{v_{\text{A}}}{v_{\text{in}}} = A_{\vee 2} A_{\vee 1} A_{\vee 0}
$$

 $R_{in2} \cong \beta R_7$

 R_{in2}

$$
R_{in2} \cong \beta R_7
$$

$$
A_{V2} = \frac{v_{out}}{v_{B}} \approx -\frac{R_6 / R_8}{R_7}
$$

$$
R_{in2} \approx \beta R_7
$$

$$
A_{\text{V0}} = \frac{v_{A}}{v_{\text{in}}} \cong \frac{R_{1}/R_{2}/R_{\text{in1}}}{R_{S} + R_{1}/R_{2}/R_{\text{in1}}}
$$

Thus we have

$$
A_{V} = \frac{v_{\text{out}}}{v_{\text{in}}} = \frac{v_{\text{out}}}{v_{\text{B}}} \frac{v_{\text{B}}}{v_{\text{A}}} \frac{v_{\text{A}}}{v_{\text{in}}}
$$
\nwhere\n
$$
\frac{v_{\text{out}}}{v_{\text{B}}} = -\frac{R_{6} / R_{8}}{R_{7}}
$$
\n
$$
\frac{v_{\text{B}}}{v_{\text{A}}} = -g_{\text{m1}}(R_{3} / R_{5} / R_{\text{in2}})
$$
\n
$$
R_{\text{in2}} \cong \beta R_{7}
$$
\n
$$
\frac{v_{\text{A}}}{v_{\text{in}}} = \frac{R_{1} / R_{2} / R_{\text{in1}}}{R_{8} + R_{1} / R_{2} / R_{\text{in1}}} \qquad R_{\text{in1}} \cong r_{\pi 1}
$$

(when stages are unilateral or not unilateral) Formalization of cascade circuit analysis working from load to input:

R_{ink} includes effects of all loading Must recalculate if any change in loading Analysis systematic and rather simple

$$
\frac{\mathbf{v}_{\text{OUT}}}{\mathbf{v}_{\text{IN}}} = \frac{\mathbf{v}_{1}}{\mathbf{v}_{\text{IN}}} \frac{\mathbf{v}_{2}}{\mathbf{v}_{1}} \frac{\mathbf{v}_{3}}{\mathbf{v}_{2}} \frac{\mathbf{v}_{\text{OUT}}}{\mathbf{v}_{3}}
$$

This was the approach used in analyzing the previous cascaded amplifier

Review: Small-signal equivalent of a one-port

Review: Small-signal equivalent of a one-port

"Diode-connected transistor"

"BE - connected transistor"

Example 2: $A_v = \frac{v_{out}}{v}$ V in $A_{v} = \frac{v_{out}}{v} = ?$ \bm{v} \bm{v}

Express in terms of small-signal parameters

Example 2:
$$
A_v = \frac{v_{out}}{v_{in}} = ?
$$

Express in terms of small-signal parameters

Gain Calculation in terms of Small-Signal **Parameters**

OUT

 v_{out}

V

V

V

2

2

=

1

=

 $\frac{V_{\text{out}}}{V_{\text{out}}}\frac{V_{2}}{V_{\text{out}}}\approx\left|-g_{\text{ma}}\left(\mathsf{R}_{\text{D}}/R_{\text{L}}\right)\left| \begin{bmatrix}1\end{bmatrix}\right|\frac{V_{\text{out}}}{V_{\text{out}}}\right|$ $V = 0$ $\omega_1 = 0$ $\omega_2 = 0$ $\omega_3 = 0$ $\omega_4 = 0$ $\omega_5 = 0$ 2^2 2^1 2^1 in 2^1 2^1 2^1 $A_v = \frac{v_{\text{out}}}{v_2} \frac{v_2}{v_1} \frac{v_1}{v_2} \approx \left[-g_{\text{m4}} (R_p / R_i) \right] \left[1 \right] \left[\frac{-g_{\text{m1}}}{v_2} \right]$ $g_{\rm m2}$ and $g_{\rm m2}$ and $g_{\rm m2}$ are $g_{\rm m2}$ a $\lceil -q_{m} \rceil$ $\frac{\partial \bm{v}_{\mathrm{out}}}{\partial \bm{v}_2} \frac{\partial \bm{v}_2}{\partial \bm{v}_1} \frac{\partial \bm{v}_1}{\partial \bm{v}_{\mathrm{in}}} \equiv \left[-\bm{g}_{\mathsf{m}4}\left(\bm{R}_{\mathsf{D}} \mathop{/} \bm{\mathcal{H}}_{\mathsf{L}}\right) \right] \left[1 \right] \left[\frac{-\bm{g}_{\mathsf{m}1}}{\bm{g}_{\mathsf{m}2}} \right]$ $v_{\scriptscriptstyle{\circ}}$ $v_{\scriptscriptstyle{\circ}}$ $v_{\scriptscriptstyle{\circ}}$ $v_{\scriptscriptstyle{\circ}}$ $v_{\scriptscriptstyle{\circ}}$ $v_{\scriptscriptstyle{\circ}}$ $v_{\scriptscriptstyle{\circ}}$ $v_{\scriptscriptstyle{\circ}}$ $v_{\scriptscriptstyle{\circ}}$ If r_{π} +β(R_{B1} // R_{B2})>>1/g_{m2}

Summary of Missing Material from Lecture 32

End Here:

$$
A_V = \frac{-g_m}{g_0 + G_C} \cong -g_m R_C
$$

To make the gain large, it appears that all one needs to do is make R_{C} large !

$$
A_V \cong -g_m R_C = \frac{-I_{CQ}R_C}{V_t}
$$

But V_t is fixed at approx 25mV and to keep Q1 in forward active with large signal swing, $I_{CO}R_C< (V_{DD} - V_{EE})/2$

$$
|A_V| < \frac{V_{DD} - V_{EE}}{2V_t}
$$

If $V_{DD} - V_{EE} = 5V$,

$$
|A_V| < \frac{5V}{2 \cdot 25mV} = 100
$$

- **Gain is practically limited with this supply voltage to around 100**
- **And in extreme case, limited to about 200 with this supply voltage with very small signal swing**

$$
A_V = \frac{-g_m}{g_0 + G_D} \cong -g_m R_D
$$

To make the gain large, it appears that all one needs to do is make R_{D} large !

$$
A_V \cong -g_m R_D = \frac{-2I_{DQ}R_D}{V_{EB}}
$$

But V_{FB} is practically limited to around 100mV and for good signal swing, $I_{\text{DO}}R_{\text{D}}<(V_{\text{DD}}V_{\text{SS}})/2$

$$
\left|A_V\right| < \frac{V_{DD} - V_{SS}}{V_{EB}}
$$

If $V_{DD} - V_{SS} = 5V$ and $V_{FB} = 100$ mV,

$$
|A_V| < \frac{5V}{100mV} = 50
$$

Gain is practically limited with this supply voltage to around 50

Are these fundamental limits on the gain of the BJT and MOS Amplifiers?

Too good to be true ! Need better model of BJT and MOS device (but we already have it) !

But are current sources really available?

This gain is very large (but realistic) !

And no design parameters affect the gain

But how can we make a current source?

Same gain with both npn and pnp transistors

How can we build the ideal current source?

What is the small-signal model of an actual current source?

Same gain with both npn and pnp transistors

Will now focus on creating current sources and then return to using these current sources to build high gain amplifiers.

Since I_X is independent of V_{DCS} , acts as an ideal current source (with this model)

Termed a "sinking" current source since current is pulled out of the load

If V_{xx} is available, each dc current source requires only one additional transistor !

Have several methods for generating V_{xx} from V_{DD} (see HW problems)

But how good is this current "sink"?

But for the npn high-gain amplifier considered need a sourcing current And may not have both MOS and Bipolar devices in most processes!

Since I_X is independent of V_{DCS} , acts as an ideal current source (with this model) Termed a "sourcing" current source since pushed into the load

If V_{YY} is available, each dc current source requires only one additional transistor !

Have several methods for generating V_{YY} from V_{DD} (see HW problems) But how good is this current "source"?

And may not have both MOS and Bipolar devices in most processes!

Since I_X is independent of V_{CCS} , acts as an ideal current source (with this model)

Termed a "sinking" current source since current is pulled out of the load

If V_{xx} is available, each dc current source requires only one additional transistor !

Have several methods for generating V_{XX} from V_{DD} (see HW problems) But for the npn high-gain amplifier considered need a sourcing current But how good is this current "sink"?

Since I_X is independent of V_{CCS} , acts as an ideal current source (with this model)

Termed a "sourcing" current source since pushed into the load

If V_{xx} is available, each dc current source requires only one additional transistor !

Current highly sensitive to V_{xx} if generated with dc voltage source

Have several methods for generating V_{xx} from V_{DD} (see HW problems)

But how good is this current "source"?

Before addressing the issue of how a current source is designed, will consider another circuit that uses current source biasing

The Basic Differential Amplifier

If A_V is large

Operational Amplifier (Op Amp)

Example: Determine the voltage gain of the following circuit

Since symmetric when $v_{\text{IN}}=0$

$$
I_{C1Q} = I_{C2Q} = \frac{I_{EE}}{2}
$$

$$
g_{m1} = g_{m2} = \frac{I_{EE}}{2V_{t}}
$$

Example: Determine the voltage gain of the following circuit

$$
\begin{aligned}\n\boldsymbol{v}_{E}\left(\boldsymbol{g}_{\pi1}+\boldsymbol{g}_{\pi1}\right) &= \boldsymbol{g}_{\pi1}\boldsymbol{v}_{\text{IN}}+\boldsymbol{g}_{\text{m1}}\left(\boldsymbol{v}_{\text{IN}}-\boldsymbol{v}_{\text{E}}\right)+\boldsymbol{g}_{\text{m2}}\left(-\boldsymbol{v}_{\text{E}}\right) \\
\boldsymbol{v}_{\text{OUT}} &= -R_{\text{CI}}\boldsymbol{g}_{\text{m1}}\left(\boldsymbol{v}_{\text{IN}}-\boldsymbol{v}_{\text{E}}\right) \\
\boldsymbol{v}_{\text{E}}\left(\boldsymbol{g}_{\pi1}+\boldsymbol{g}_{\pi2}+\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\text{m2}}\right) &= \boldsymbol{v}_{\text{IN}}\left(\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\pi1}\right) \\
\boldsymbol{v}_{\text{E}} &= \frac{\left(\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\pi1}\right)}{\left(\boldsymbol{g}_{\pi1}+\boldsymbol{g}_{\pi2}+\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\text{m2}}\right)}\boldsymbol{v}_{\text{IN}} \\
\boldsymbol{v}_{\text{OUT}} &= -R_{\text{CI}}\boldsymbol{g}_{\text{m1}}\boldsymbol{v}_{\text{IN}}\left[1-\frac{\left(\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\pi1}\right)}{\left(\boldsymbol{g}_{\pi1}+\boldsymbol{g}_{\pi2}+\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\text{m2}}\right)}\right] \\
\boldsymbol{v}_{\text{OUT}} &= -R_{\text{CI}}\boldsymbol{g}_{\text{m1}}\boldsymbol{v}_{\text{IN}}\left[\frac{\boldsymbol{g}_{\pi1}+\boldsymbol{g}_{\pi2}+\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\text{m2}}-\left(\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\text{m2}}\right)}{\left(\boldsymbol{g}_{\pi1}+\boldsymbol{g}_{\pi2}+\boldsymbol{g}_{\text{m1}}+\boldsymbol{g}_{\text{m2}}\right)}\right]\n\end{aligned}
$$

Example: Determine the voltage gain of the following circuit

$$
\boldsymbol{v}_{\text{OUT}} = -R_{\text{Cl}} \boldsymbol{g}_{m1} \boldsymbol{v}_{\text{IN}} \left[\frac{\boldsymbol{g}_{\pi 1} + \boldsymbol{g}_{\pi 2} + \boldsymbol{g}_{m1} + \boldsymbol{g}_{m2} - (\boldsymbol{g}_{m1} + \boldsymbol{g}_{\pi 1})}{(\boldsymbol{g}_{\pi 1} + \boldsymbol{g}_{\pi 2} + \boldsymbol{g}_{m1} + \boldsymbol{g}_{m2})} \right]
$$
\n
$$
\boldsymbol{v}_{\text{OUT}} \simeq -R_{\text{Cl}} \boldsymbol{g}_{m1} \boldsymbol{v}_{\text{IN}} \left[\frac{\boldsymbol{g}_{m2}}{(\boldsymbol{g}_{m1} + \boldsymbol{g}_{m2})} \right]
$$
\n
$$
\boldsymbol{v}_{\text{OUT}} \simeq \left[\frac{-R_{\text{Cl}} \boldsymbol{g}_{m1}}{2} \right] \boldsymbol{v}_{\text{IN}} \boldsymbol{v}_{\text{IN}}
$$
\n
$$
\boldsymbol{v}_{\text{OUT2}} \simeq \left[\frac{R_{\text{Cl}} \boldsymbol{g}_{m1}}{2} \right] \boldsymbol{v}_{\text{IN}}
$$

- Very useful circuit
- This is a basic Op Amp
- Uses a current source and V_{DD} for biasing (no biasing resistors or caps!)
- But needs a dc current source !!!!

Simple Current Sources

But how good are these current sources?

Model of dc Current Source

"Reasonable dc Current Source"

Small-signal model of dc current source (since one-port)

 I_{XX} independent of V_1 and t, R_{S} large

want R_{IN} large

 I_{XX} independent of V_1 and t

 $R_{\rm IN} = \infty$

Will show circuit in red behaves as a current source

R and Q_0 simply generate voltage V_{xx} in previous circuit But sensitivity of I₁ is much smaller than using voltage source for generating V_{xx}

$$
I_0 \cong \frac{(V_{CC} - 0.6V)}{R}
$$

If the base currents are neglected

$$
I_0 \cong \frac{(V_{CC} - 0.6V)}{R}
$$

If the base currents are neglected

$$
\begin{array}{ccc}\nI_0 = J_S A_{E0} e^{\frac{V_{BE0}}{V_t}} \\
I_1 = J_S A_{E1} e^{\frac{V_{BE1}}{V_t}}\n\end{array}
$$

since V_{BE1}=V_{BE2}

$$
\boldsymbol{I}_{1}\cong\left(\frac{A_{E1}}{A_{E0}}\right)\boldsymbol{I}_{0}\!=\!\left(\frac{A_{E1}}{A_{E0}}\right)\!\frac{\boldsymbol{V_{CC}}-0.6V}{R}
$$

Note I_1 is not a function of V_1

Behaves as a current sink ! So is ideal with this model !!

And does not require an additional dc voltage source !!!

- **Multiple Outputs Possible**
- **Can be built for sourcing or sinking currents**
- **Also useful as a current amplifier**
- **MOS counterparts work very well and are not plagued by base current**

Two ways to look at this circuit:

- Q_0 and R bias Q_1
- R biases the Q_{0} : Q_{1} block

Current Sources/Mirrors Q_0 V_{CC} R $Q₁$ A_{E0} A_{E1} $\begin{bmatrix} 1_0 & 1_1 \\ 0 & 1_1 \end{bmatrix}$

Current Sources are Seldom Available in Basic Laboratories:

Biasing of board-level and discrete electronic circuits is usually done with voltage sources, resistors, and capacitors

Biasing resistors and capacitors are used very sparingly in MOS circuits

Will show on-chip current sources can be very small

Biasing of on-chip circuits is often done with current sources instead of R's and C's

Multiple-Output Bipolar Current Sink

If the base currents are neglected

$$
\mathbf{I}_k = \left[\frac{\mathbf{A}_{Ek}}{\mathbf{A}_{E0}} \right] \mathbf{I}_0
$$

Multiple-Output Bipolar Current Source

If the base currents are neglected

$$
\mathbf{I}_k = \left[\frac{\mathbf{A}_{Ek}}{\mathbf{A}_{E0}} \right] \mathbf{I}_0
$$

Multiple-Output Bipolar Current Source and Sink

$$
I_{nk} = ? \qquad I_{pk} = ?
$$

This circuit is termed a "current mirror"

Will re-derive the transfer characteristics of the current mirror assuming I_B is small compared to $I_{\rm C}$

npn Current Mirror

If the base currents are neglected

- **Output current linearly dependent on I in**
- **Small-signal and large-signal relationships the same since linear**
- **Serves as a current amplifier**
- **Widely used circuit**

But Iin must be positive !

Amplifies both positive and negative currents (provided i_{IN}>-I_{BS})

E0

Current amplifiers are easy to build !!

Current gain can be accurately controlled with appropriate layout !!

$$
I_{\text{out}} = ?
$$

n-channel Current Mirror

- Current mirror gain can be accurately controlled !
- Layout is important to get accurate gain (for both MOS and BJT)

n-channel current mirror current amplifier

Amplifies both positive and negative currents

multiple sourcing and sinking current outputs

m and k may be different Often M=1

Current Sources/Mirrors Summary

- Current mirror gain can be accurately controlled !
- Layout is important to get accurate gain (for both MOS and BJT)

Stay Safe and Stay Healthy !

End of Lecture 33