EE 330 Lecture 33

- High Gain Amplifiers
- Current Sources and Mirrors

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27

Exam 2 Friday October 25

Exam 3 Friday Nov 22

Final Exam Monday Dec 16 12:00 - 2:00 PM

Basic Amplifier Application Gain Table

(<u>not</u> two-port models for the four structures)

Can use these equations only when small signal circuit is EXACTLY like that shown!!

Summary of Missing Material from Lecture 32

Start Here:

Basic Amplifier Structures

- 1. Common Emitter/Common Source
- 2. Common Collector/Common Drain
- 3. Common Base/Common Gate
- 4. Common Emitter with R_E/ Common Source with R_S
- 5. Cascode (actually CE:CB or CS:CG cascade)
- 6. Darlington (special CC:CE or CD:CS cascade)

Will be discussed later

The first 4 are most popular

Basic Amplifier Characteristics Summary

CE/CS $v_{\text{in}} \stackrel{V_{\text{DD}}}{\downarrow} v_{\text{out}}$

- Large inverting gain
- Moderate input impedance
- Moderate (or high) output impedance
- Widely used as the basic high gain inverting amplifier

- Gain very close to +1 (little less)
- High input impedance for BJT (high for MOS)
- Low output impedance
- Widely used as a buffer

CB/CG

V_{BB}

v_n

v_n

v_n

- Large noninverting gain
- Low input impedance
- Moderate (or high) output impedance
- Used more as current amplifier or, in conjunction with CD/CS to form two-stage cascode

CEWRE/ CSWRS

- Reasonably accurate but somewhat small gain (resistor ratio)
- **y**out High input impedance
 - Moderate output impedance
 - Used when more accurate gain is required

Cascaded Amplifiers

- Amplifier cascading widely used to enhance gain
- Amplifier cascading widely used to enhance other characteristics and/or alter functionality as well

 The RW Bower Book in a critical learned area. Conversion.)

e.g. (R_{IN}, BW, Power, R_O, Linearity, Impedance Conversion..)

Cascaded Amplifier Analysis and Operation

Adjacent Stage Coupling Only

Systematic Methods of Analysis/Design will be Developed

One or more couplings of nonadjacent stages

- Less Common
- Analysis Generally Much More Involved, Use Basic Circuit Analysis Methods

Repeat from earlier discussions on amplifiers

Cascaded Amplifier Analysis and Operation

Case 1: All stages Unilateral

$$A_{V} = \frac{v_{out}}{v_{in}} = \left(\frac{R_{iX1}}{R_{iX1} + R_{S}}\right) A_{V01} \left(\frac{R_{L1} / / R_{iX2}}{R_{L1} / / R_{iX2} + R_{0X1}}\right) A_{V02} \left(\frac{R_{L}}{R_{L} + R_{0X2}}\right)$$

Accounts for all loading between stages!

Cascaded Amplifier Analysis and Operation

Case 2: One or more stages are not unilateral

Standard two-port cascade

Analysis by creating new two-port of entire amplifier quite tedious because of the reverse-gain elements

➤ Right-to-left nested R_{inx},A_{VKX} approach

- R_{inx} includes effects of <u>all</u> loading
- A_{VKX} is the voltage ratio from input to output of a stage
- A_{VKX}'s include all loading
- Can not change any loading without recalculating everthing!

Determine the voltage gain of the following circuit in terms of the small-signal parameters of the transistors. Assume Q_1 and Q_2 are operating in the Forward Active region and $C_1...C_4$ are large.

In this form, does not look "EXACTLY" like any of the basic amplifiers!

Will calculate A_V by determining the three ratios (not voltage gains of dependent source):

$$\mathsf{A}_\mathsf{V} = \frac{v_\mathsf{out}}{v_\mathsf{in}} = \frac{v_\mathsf{out}}{v_\mathsf{B}} \frac{v_\mathsf{B}}{v_\mathsf{A}} \frac{v_\mathsf{A}}{v_\mathsf{in}} = \mathsf{A}_\mathsf{V2} \mathsf{A}_\mathsf{V1} \mathsf{A}_\mathsf{V0}$$

$$\mathsf{A}_{\mathsf{V2}} \texttt{=} \frac{v_{\mathsf{out}}}{v_{\mathsf{B}}} \cong -\frac{\mathsf{R}_{\mathsf{6}} /\!/ \mathsf{R}_{\mathsf{8}}}{\mathsf{R}_{\mathsf{7}}}$$

$$R_{in2} \cong \beta R_7$$

$$R_{in2} \cong \beta R_7$$

$$\mathsf{A}_{\mathsf{V2}} = rac{v_{\mathsf{out}}}{v_{\mathsf{B}}} \cong -rac{\mathsf{R}_{\mathsf{6}}/\!/\mathsf{R}_{\mathsf{8}}}{\mathsf{R}_{\mathsf{7}}}$$
 $\mathsf{R}_{\mathsf{in2}} \cong \mathsf{\beta} \mathsf{R}_{\mathsf{7}}$

$$\mathsf{A}_{\text{V1}} \texttt{=} \frac{v_{\text{B}}}{v_{\text{A}}} \cong -\mathsf{g}_{\text{m1}} (\mathsf{R}_3 /\!/ \mathsf{R}_5 /\!/ \mathsf{R}_{\text{in2}})$$

$$R_{in1} \cong r_{\pi 1}$$

$$\mathsf{A}_{\text{V0}} = \frac{v_{\text{A}}}{v_{\text{in}}} \cong \frac{\mathsf{R}_{\text{1}} / / \mathsf{R}_{\text{2}} \, / \, / \mathsf{R}_{\text{in1}}}{\mathsf{R}_{\text{S}} + \mathsf{R}_{\text{1}} / / \mathsf{R}_{\text{2}} \, / \, / \mathsf{R}_{\text{in1}}}$$

Thus we have

$$A_{V} = \frac{v_{\text{out}}}{v_{\text{in}}} = \frac{v_{\text{out}}}{v_{\text{B}}} \frac{v_{\text{B}}}{v_{\text{A}}} \frac{v_{\text{A}}}{v_{\text{in}}}$$
$$\frac{v_{\text{out}}}{v_{\text{B}}} \cong -\frac{R_{6}/\!/R_{8}}{R_{7}}$$

where

$$rac{oldsymbol{v}_{
m out}}{oldsymbol{v}_{
m B}}\cong -rac{{
m R}_6/\!/{
m R}_8}{{
m R}_7}$$

$$\begin{split} \frac{v_{_{\rm B}}}{v_{_{\rm A}}} &\cong -{\rm g}_{\rm m1}({\rm R}_3 /\!/{\rm R}_5 /\!/{\rm R}_{\rm in2}) & {\rm R}_{\rm in2} \cong \beta {\rm R}_7 \\ \frac{v_{_{\rm A}}}{v_{_{\rm in}}} &\cong \frac{{\rm R}_1 /\!/{\rm R}_2 \,/\,/{\rm R}_{\rm in1}}{{\rm R}_{_{\rm S}} + {\rm R}_1 /\!/{\rm R}_2 \,/\,/{\rm R}_{\rm in1}} & {\rm R}_{\rm in1} \cong {\rm r}_{\pi 1} \end{split}$$

Formalization of cascade circuit analysis working from load to input: (when stages are unilateral or not unilateral)

R_{ink} includes effects of all loading Must recalculate if any change in loading Analysis systematic and rather simple

$$\frac{\boldsymbol{v}_{\text{OUT}}}{\boldsymbol{v}_{\text{IN}}} = \frac{\boldsymbol{v}_{\text{1}}}{\boldsymbol{v}_{\text{IN}}} \frac{\boldsymbol{v}_{\text{2}}}{\boldsymbol{v}_{\text{1}}} \frac{\boldsymbol{v}_{\text{3}}}{\boldsymbol{v}_{\text{2}}} \frac{\boldsymbol{v}_{\text{OUT}}}{\boldsymbol{v}_{\text{3}}}$$

This was the approach used in analyzing the previous cascaded amplifier

Review: Small-signal equivalent of a one-port

"Diode-connected transistor"

"GS - connected transistor"

Review: Small-signal equivalent of a one-port

"Diode-connected transistor"

"BE - connected transistor"

Example 2: $A_V = \frac{v_{out}}{v_{in}} = ?$

Express in terms of small-signal parameters

Example 2:
$$A_V = \frac{v_{out}}{v_{in}} = ?$$

Express in terms of small-signal parameters

Example 2: $A_V = \frac{v_{out}}{v_{in}} = ?$

Express in terms of small-signal parameters

Gain Calculation in terms of Small-Signal Parameters

$$rac{oldsymbol{v}_{ ext{out}}}{oldsymbol{v}_{ ext{2}}} =$$

$$\frac{\boldsymbol{v}_2}{\boldsymbol{v}_1} =$$

$$rac{oldsymbol{v}_{_{\mathrm{l}}}}{oldsymbol{v}_{_{\mathrm{in}}}}=$$

If
$$r_{\pi} + \beta(R_{B1}//R_{B2}) > 1/g_{m2}$$

$$\mathsf{A}_{\mathsf{V}} = \frac{\boldsymbol{v}_{\mathsf{out}}}{\boldsymbol{v}_{\mathsf{2}}} \frac{\boldsymbol{v}_{\mathsf{2}}}{\boldsymbol{v}_{\mathsf{1}}} \frac{\boldsymbol{v}_{\mathsf{1}}}{\boldsymbol{v}_{\mathsf{in}}} \cong \left[-\mathsf{g}_{\mathsf{m4}} \left(\mathsf{R}_{\mathsf{D}} \, / \, / \mathsf{R}_{\mathsf{L}} \right) \right] \left[1 \right] \left[\frac{-\mathsf{g}_{\mathsf{m1}}}{\mathsf{g}_{\mathsf{m2}}} \right]$$

Summary of Missing Material from Lecture 32

End Here:

$$A_V = \frac{-g_m}{g_0 + G_C} \cong -g_m R_C$$

To make the gain large, it appears that all one needs to do is make $R_{\rm C}$ large !

$$A_V \cong -g_m R_C = \frac{-I_{CQ} R_C}{V_t}$$

But V_t is fixed at approx 25mV and to keep Q1 in forward active with large signal swing, $I_{CQ}R_C < (V_{DD} - V_{EE})/2$

$$|A_V| < \frac{V_{DD} - V_{EE}}{2V_t}$$
If $V_{DD} - V_{EE} = 5V$,
$$|A_V| < \frac{5V}{2 \cdot 25mV} = 100$$

- Gain is practically limited with this supply voltage to around 100
- And in extreme case, limited to about 200 with this supply voltage with very small signal swing

$$A_V = \frac{-g_m}{g_0 + G_D} \cong -g_m R_D$$

To make the gain large, it appears that all one needs to do is make R_D large !

$$A_{V} \cong -g_{m}R_{D} = \frac{-2I_{DQ}R_{D}}{V_{EB}}$$

But V_{EB} is practically limited to around 100mV and for good signal swing, $I_{DO}R_D < (V_{DD}V_{SS})/2$

$$\left|A_{V}\right| < \frac{V_{DD} - V_{SS}}{V_{FB}}$$

If V_{DD} - V_{SS} =5V and V_{EB} =100mV,

$$|A_V| < \frac{5V}{100mV} = 50$$

Gain is practically limited with this supply voltage to around 50

Are these fundamental limits on the gain of the BJT and MOS Amplifiers?

 $\mathsf{g}_{\mathsf{m}}v_{\mathsf{BE}}$

$$A_V = \frac{-g_m}{0} = -\infty$$

Fundamentally a different circuit

Current source is biasing Q₁

This gain is very large!

Too good to be true!

Need better model of BJT and MOS device (but we already have it)!

But are current sources really available?

 V_{DD}

 $V_{\text{OUT}} \\$

 I_B

 V_{EE}

Current Source ???

Keysight Technologies...

\$2,882.00

Voltage Source

Did you have any current sources in the EE 201 laboratory?

Did you have any current sources in the EE 230 laboratory?

Do current sources really exist?

$$A_{V} = \frac{g_{0}}{g_{0}}$$

$$A_{V} = \frac{-I_{CQ}}{V_{t}I_{CQ}/V_{AF}} = -\frac{V_{AF}}{V_{t}}$$

$$A_V = -\frac{V_{AF}}{V_t} \cong \frac{200V}{25mV} = -8000$$

This gain is very large (but realistic)!

And no design parameters affect the gain

But how can we make a current source?

Same gain with both npn and pnp transistors

How can we build the ideal current source?

What is the small-signal model of an actual current source?

Same gain with both npn and pnp transistors

Will now focus on creating current sources and then return to using these current sources to build high gain amplifiers.

Simple Current Sources

a "sinking" current source

 V_{DD}

LOAD

 V_{DCS}

 I_X

Since I_X is independent of V_{DCS} , acts as an ideal current source (with this model)

Termed a "sinking" current source since current is pulled out of the load

If V_{XX} is available, each dc current source requires only one additional transistor!

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But how good is this current "sink"?

And may not have both MOS and Bipolar devices in most processes! But for the npn high-gain amplifier considered need a sourcing current

Simple Current Sources

a "sourcing" current source

Since I_X is independent of V_{DCS} , acts as an ideal current source (with this model)

Termed a "sourcing" current source since pushed into the load

If V_{YY} is available, each dc current source requires only one additional transistor!

Have several methods for generating V_{YY} from V_{DD} (see HW problems)

But how good is this current "source"?

And may not have both MOS and Bipolar devices in most processes!

Simple Current Sources

a "sinking" current source

Since I_X is independent of V_{CCS} , acts as an ideal current source (with this model)

Termed a "sinking" current source since current is pulled out of the load

If V_{XX} is available, each dc current source requires only one additional transistor!

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But for the npn high-gain amplifier considered need a sourcing current

But how good is this current "sink"?

Simple Current Sources

a "sourcing" current source

Since I_X is independent of V_{CCS} , acts as an ideal current source (with this model)

Termed a "sourcing" current source since pushed into the load

If V_{XX} is available, each dc current source requires only one additional transistor !

Current highly sensitive to V_{xx} if generated with dc voltage source

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But how good is this current "source"?

Before addressing the issue of how a current source is designed, will consider another circuit that uses current source biasing

The Basic Differential Amplifier

If A_V is large

Operational Amplifier (Op Amp)

Example: Determine the voltage gain of the following circuit

Since symmetric when $v_{\scriptscriptstyle {
m IN}}$ =0

$$I_{C1Q} = I_{C2Q} = \frac{I_{EE}}{2}$$

$$g_{m1} = g_{m2} = \frac{I_{EE}}{2V_t}$$

Determine the voltage gain of the Example: following circuit

$$v_{E}(g_{\pi 1} + g_{\pi 1}) = g_{\pi 1}v_{IN} + g_{m1}(v_{IN} - v_{E}) + g_{m2}(-v_{E})$$

$$v_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = v_{IN}(g_{m1} + g_{\pi 1})$$

$$v_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = v_{IN}(g_{m1} + g_{\pi 1})$$

$$v_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = v_{IN}(g_{m1} + g_{\pi 1})$$

$$v_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = v_{IN}(g_{m1} + g_{\pi 1})$$

$$V_E(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = V_{IN}(g_{m1} + g_{\pi 1})$$

$$\mathbf{v}_{E} = \frac{(g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \mathbf{v}_{IN}$$

$$\mathbf{v}_{OUT} = -R_{C1}\mathbf{g}_{m1}\mathbf{v}_{IN} \left[1 - \frac{\left(\mathbf{g}_{m1} + \mathbf{g}_{\pi 1} \right)}{\left(\mathbf{g}_{\pi 1} + \mathbf{g}_{\pi 2} + \mathbf{g}_{m1} + \mathbf{g}_{m2} \right)} \right]$$

$$\mathbf{v}_{OUT} = -R_{C1}g_{m1}\mathbf{v}_{IN} \left[\frac{g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2} - (g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \right]$$

Example: Determine the voltage gain of the following circuit

$$v_{OUT} = -R_{C1}g_{m1}v_{IN} \left[\frac{g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2} - (g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \right]$$

$$v_{OUT} \cong -R_{C1}g_{m1}v_{IN} \left[\frac{g_{m2}}{(g_{m1} + g_{m2})} \right]$$

$$v_{OUT} \cong \left[\frac{-R_{C1}g_{m1}}{2} \right] v_{IN}$$

$$v_{OUT} \cong \left[\frac{R_{C1}g_{m1}}{2} \right] v_{IN}$$

Differential amplifier

- Very useful circuit
- This is a basic Op Amp
- Uses a current source and V_{DD} for biasing (no biasing resistors or caps!)
- But needs a dc current source !!!!

Simple Current Sources

But how good are these current sources?

Model of dc Current Source

"Reasonable dc Current Source"

 I_{XX} independent of V_1 and t, R_S large

Small-signal model of dc current source (since one-port)

want R_{IN} large

Ideal dc Current Source

I_{XX} independent of V₁ and t

Will show circuit in red behaves as a current source

R and Q_0 simply generate voltage V_{XX} in previous circuit

But sensitivity of I_1 is much smaller than using voltage source for generating $V_{\chi\chi}$

$$I_0 \cong \frac{\left(V_{CC}\text{-}0.6V\right)}{R}$$

If the base currents are neglected

$$I_0 \cong \frac{\left(V_{CC}\text{-}0.6V\right)}{R}$$

If the base currents are neglected

$$I_0 = J_S A_{E0} e^{\frac{V_{BE0}}{V_t}}$$
 $I_1 = J_S A_{E1} e^{\frac{V_{BE1}}{V_t}}$

since V_{BE1}=V_{BE2}

$$I_1 \cong \left(\frac{A_{E1}}{A_{E0}}\right) I_0 = \left(\frac{A_{E1}}{A_{E0}}\right) \frac{V_{CC} - 0.6V}{R}$$

Note I₁ is not a function of V₁

Behaves as a current sink! So is ideal with this model!!

And does not require an additional dc voltage source !!!

- Multiple Outputs Possible
- Can be built for sourcing or sinking currents
- Also useful as a current amplifier
- MOS counterparts work very well and are not plagued by base current

Two ways to look at this circuit:

- Q₀ and R bias Q₁
- R biases the Q₀: Q₁ block

Current Sources are Seldom Available in Basic Laboratories:

Biasing of board-level and discrete electronic circuits is usually done with voltage sources, resistors, and capacitors

Biasing resistors and capacitors are used very sparingly in MOS circuits

Will show on-chip current sources can be very small

Biasing of on-chip circuits is often done with current sources instead of R's and C's

Multiple-Output Bipolar Current Sink
If the base currents are neglected

$$\mathbf{I}_{k} = \begin{bmatrix} \mathbf{A}_{Ek} \\ \mathbf{A}_{E0} \end{bmatrix} \mathbf{I}_{0}$$

Multiple-Output Bipolar Current Source
If the base currents are neglected

$$\mathbf{I}_{k} = \begin{vmatrix} \mathbf{A}_{Ek} \\ \mathbf{A}_{E0} \end{vmatrix} \mathbf{I}_{0}$$

Multiple-Output Bipolar Current Source and Sink

$$I_{nk} = ? I_{pk} = ?$$

Multiple-Output Bipolar Current Source and Sink If the base currents are neglected

$$I_{nk} = \left[\frac{A_{Enk}}{A_{E0}}\right]I_0 \qquad I_{pk} = \left[\frac{A_{En1}}{A_{E0}}\right]\left|\frac{A_{Epk}}{A_{Ep0}}\right|I_0$$

This circuit is termed a "current mirror"

Will re-derive the transfer characteristics of the current mirror assuming $I_{\rm B}$ is small compared to $I_{\rm C}$

npn Current Mirror

If the base currents are neglected

$$I_{\text{out}} = \left[\frac{A_{\text{E1}}}{A_{\text{E0}}} \right] I_{\text{in}}$$

- Output current linearly dependent on lin
- Small-signal and large-signal relationships the same since linear
- Serves as a current amplifier
- Widely used circuit

But I_{in} must be positive!

npn current mirror amplifier

$$\frac{i_{\text{OUT}} + \text{MI}_{\text{BS}}}{i_{\text{in}} + \text{I}_{\text{BS}}} = \text{M}$$

$$i_{\text{OUT}} + \text{MI}_{\text{BS}} = \text{M} \left(i_{\text{in}} + \text{I}_{\text{BS}} \right)$$

$$i_{\text{OUT}} + \text{MJ}_{\text{BS}}' = \text{M} \left(i_{\text{in}} + \text{J}_{\text{BS}} \right)$$

$$\frac{i_{\text{OUT}}}{i_{\text{in}}} = \text{M}$$

$$i_{\text{in}}$$
But $I_{\text{BS}} + i_{\text{in}} > 0$!

npn current mirror amplifier

$$i_{\text{out}} = \left[\frac{A_{\text{E1}}}{A_{\text{E0}}}\right] i_{\text{in}}$$

Amplifies both positive and negative currents (provided i_{IN}>-I_{BS})

Current amplifiers are easy to build !!

Current gain can be accurately controlled with appropriate layout !!

n-channel Current Mirror

$$I_{in} = \frac{\mu C_{OX} W_0}{2L_0} (V_{GS0} - V_{T0})^2$$

$$I_{out} = \frac{\mu C_{OX} W_1}{2L_1} (V_{GS1} - V_{T1})^2$$

If process parameters are matched, it follows that

$$\mathbf{I}_{\text{out}} = \left[\frac{\mathbf{W}_1}{\mathbf{W}_0} \frac{\mathbf{L}_0}{\mathbf{L}_1} \right] \mathbf{I}_{\text{in}}$$

- Current mirror gain <u>can</u> be accurately controlled!
- Layout is important to get accurate gain (for both MOS and BJT)

n-channel current mirror current amplifier

$$i_{\text{out}} = \left[\frac{W_2}{W_1} \frac{L_1}{L_2} \right] i_{\text{in}}$$

Amplifies both positive and negative currents

$$\mathbf{I}_{k} = \left[\frac{\mathbf{W}_{k}}{\mathbf{W}_{0}} \frac{\mathbf{L}_{0}}{\mathbf{L}_{k}} \right] \mathbf{I}_{0}$$

multiple sourcing and sinking current outputs

m and k may be different Often M=1

Current Sources/Mirrors Summary

npn Current Mirror

$$I_{out} = \left[\frac{A_{E1}}{A_{E0}} \right] I_{in}$$

n-channel Current Mirror

$$\mathbf{I}_{\text{out}} = \left[\frac{\mathbf{W}_1}{\mathbf{W}_0} \frac{\mathbf{L}_0}{\mathbf{L}_1} \right] \mathbf{I}_{\text{in}}$$

- Current mirror gain <u>can</u> be accurately controlled!
- Layout is important to get accurate gain (for both MOS and BJT)

Stay Safe and Stay Healthy!

End of Lecture 33